更多>>精华博文推荐
更多>>人气最旺专家

周稳

领域:新疆日报

介绍:ssafetypropertyGreatWenchuantoselectionandearthquakebringsupgreatchallengesofthestructureAtwesternoptimizationslopesupportingpresent,China’strafficaisnewconstructionistofacingperiod.Therefore,itnecessaryofthestructuresthestudydynamicresponsesupportingunderstrongtoselectstructuresformsoftheearthquake,andappropriateretainingBasedontheofDariconstructioninslopebackgroundRailwaymountainousiscomplicatedareas,thegeographicalpapersupportedbyrailwayoftheministry:Anti—seismictechnologystudyspecialsupportingstructureofthehi曲一Steepslope(No:2008G028.D-4)Theresearchwascarriedouttotheof...

卫叶

领域:中国企业信息网

介绍:备注:从现状—原因—措施三个内容填写。利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌

利来国际最给利的老牌
本站新公告利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌
6fg | 2018-12-16 | 阅读(49) | 评论(690)
以《济公》为观众所熟知的游本昌自称“80后”,“刚刚参加工作的时候,前辈告诉我,干文艺的三个标准:可以是有营养的牛奶,再不行就是解渴的白开水,但绝不能提供有害的东西。【阅读全文】
利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌
d6x | 2018-12-16 | 阅读(832) | 评论(822)
(6)税收引导企业生产,促进经济发展方式转变:政府通过调节增值税、企业所得税、环保税等税率,可以引导企业节约资源,保护环境,推动经济发展方式的转变和资源节约型、环境友好型社会的建设。【阅读全文】
tag | 2018-12-16 | 阅读(455) | 评论(279)
朱自清先生还曾经为他在西南联大的研究生萧望卿(1917—2006)所著的《陶渊明批评》一书作序,序中充满了奖掖后进的热情,但仍然全在讨论学问,有许多见道之言,例如讲文学批评的意义,讲陶渊明对玄言诗的超越,都深刻有味。【阅读全文】
v5q | 2018-12-16 | 阅读(144) | 评论(918)
我们认为被侵权者深恶痛绝网站的一大原因,就是自我经济利益受到损害。【阅读全文】
ij5 | 2018-12-16 | 阅读(502) | 评论(490)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
dza | 2018-12-15 | 阅读(105) | 评论(613)
全国人大行使的四项职权有“最高”两字,而全国人大常委会作为全国人大的常设机关,在全国人大闭会期间行使部分职权,故其行使的四项职权没有“最高”两字。【阅读全文】
iup | 2018-12-15 | 阅读(621) | 评论(455)
网友表示“真是讨厌的名字”,毫不掩饰讨厌韩国的感情。【阅读全文】
vms | 2018-12-15 | 阅读(712) | 评论(84)
…-=πC2rr长等于圆周长的一半宽等于圆的半径-=πC2rr长方形的面积=长×宽πrr圆的面积=×=πr2长等于圆周长的一半宽等于圆的半径如果用S表示圆的面积,圆的半径是r。【阅读全文】
利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌,利来国际最给利的老牌
4df | 2018-12-15 | 阅读(978) | 评论(312)
在无锡搭建的电影拍摄空间为6000平方米,是《歌手》录制场地的五倍,工作人员达800人。【阅读全文】
p4a | 2018-12-14 | 阅读(296) | 评论(887)
其次可以更好的指导生产,提供给油田剩余油的分布状况,为下一步开发调整提供依据,从而达到“控水稳油、增储上产的目的。【阅读全文】
hi5 | 2018-12-14 | 阅读(975) | 评论(546)
(一)、测量液体的密度3.实验记录表格:液体的密度ρ/kg·m-3量筒中液体体积V/cm3量筒中液体的质量m/g杯和剩余液体的质量m2/g杯和液体的质量m1/g注意:  计算过程所用单位和测量结果所用的单位。【阅读全文】
d3o | 2018-12-14 | 阅读(195) | 评论(426)
他作诗也只求明白诚恳,不排不典;他的诗是散文化的。【阅读全文】
ri3 | 2018-12-14 | 阅读(106) | 评论(645)
在雅虎新闻留言板界面,关于韩国瑜胜选的读卖新闻、朝日新闻等大媒体报道下,除了讨论台湾政局之声,也有各种揶揄这个名字的留言。【阅读全文】
rye | 2018-12-13 | 阅读(189) | 评论(115)
RFID技术在图书馆的应用领域中,美国目前处于世界领先地位,英国与日本次之。【阅读全文】
zkv | 2018-12-13 | 阅读(333) | 评论(3)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2018-12-16

利来国际w66.com 利来娱乐网址 w66利来国际 利来国际网址 利来电游官方网站
w66利来国际手机app 利来娱乐国际最给利老牌网站 w66.利来国际 利来国际公司
w66.cm利来国际 利来国际 利来国际备用 利来国际老牌博彩 利来国际最给利的老牌
利来客服 利来国际旗舰版 利来国际最给利的老牌 利来,利来娱乐 w66.cm利来国际
荃湾区| 西贡区| 饶河县| 静乐县| 游戏| 凤山县| 明光市| 维西| 金山区| 黑龙江省| 油尖旺区| 安义县| 连平县| 湟源县| 都安| 永德县| 新津县| 彩票| 安图县| 河源市| 行唐县| 东丰县| 田林县| 大同县| 汤阴县| 当雄县| 新竹县| 砚山县| 鹿邑县| 韶关市| 云安县| 花垣县| 张家界市| 镶黄旗| 吉木乃县| 焉耆| 探索| 西宁市| 开原市| 怀化市| 青阳县| http:// http:// http:// http:// http:// http://